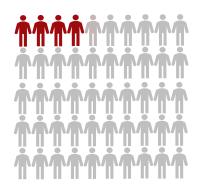
Impact of finerenone on chronic kidney disease progression in Chinese patients with type 2 diabetes

FIGARO-DKD subgroup analysis

Ping Li, PhD


Hongguang Zheng, Jianhua Ma, Weiping Lu, Ling Li, Fang Liu, Qing Su, Yuxiu Li, Yi Fang, Zhaohui Mo, Fei Xiong, Aiping Yin, Ying Zhang, Li Wang, Luke Roberts, Meike Brinker, Dalong Zhu, on behalf of the FIGARO-DKD Investigators

Disclosures

- Katja Rohwedder (presenter, on behalf of Ping Li) is a full-time employee of Bayer AG
- Ping Li has nothing to disclose

Finerenone provides a much-needed therapeutic option to the many Chinese patients with CKD

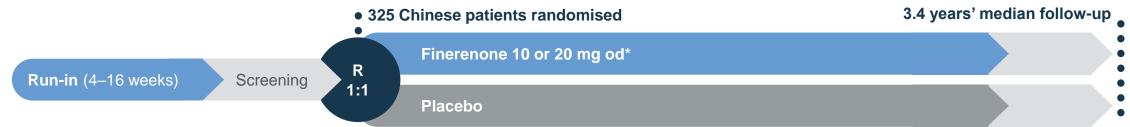
~82 million adults with CKD in China¹

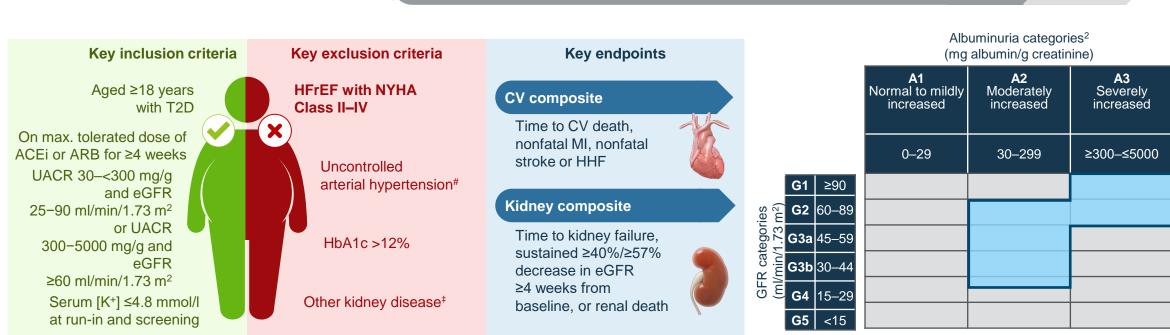
8.2%

estimated prevalence¹

Chinese patients tend to experience more rapid deterioration in kidney function vs Caucasian patients²

Finerenone is a selective nonsteroidal mineralocorticoid receptor antagonist shown to delay CKD progression and reduce the risk of CV events in the phase III randomised clinical trials FIDELIO-DKD and FIGARO-DKD^{3,4}




Objective: This FIGARO-DKD subgroup analysis explored the cardiovascular and kidney benefits of finerenone in the Chinese subgroup

CKD, chronic kidney disease; CV, cardiovascular; T2D, type 2 diabetes

1. Wang L, et al. JAMA Intern Med 2023;183:298–310; 2. Khoo CM, et al. Diabetes Obes Metab 2021 23:299–317; 3. Bakris GL, et al. N Engl J Med. 2020;383:2219–2229; 4. Pitt B, et al. N Engl J Med. 2021;385:2252–2263

FIGARO-DKD was a randomised phase III trial of finerenone versus placebo in patients with early to middle stage CKD in T2D¹

^{*10} mg if screening eGFR <60 ml/min/1.73 m²; 20 mg if ≥60 ml/min/1.73 m², up-titration encouraged from month 1 if serum potassium ≤4.8 mmol/l and eGFR stable; a decrease in the dose from 20 to 10 mg od was allowed any time after the initiation of finerenone or placebo; #mean sitting SBP ≥170 mmHg or mean sitting DBP ≥110 mmHg at the run-in visit, or mean sitting SBP ≥160 mmHg or mean sitting DBP ≥100 mmHg at the screening visit; ‡known significant nondiabetic kidney disease, including clinically relevant renal artery stenosis

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CKD, chronic kidney disease; CV, cardiovascular; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; GFR, glomerular filtration rate; HbA1c, glycated haemoglobin; HFrEF, heart failure with reduced ejection fraction; HHF, hospitalisation for heart failure; [K+], potassium concentration; MI, myocardial infarction; NYHA, New York Heart Association; od, once daily; R, randomisation; SBP, systolic blood pressure; T2D, type 2 diabetes; UACR, urine albumin-creatinine ratio

1. Pitt B, et al. N Engl J Med 2021; 85:2252–2263; 2. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. Kidney Int 2013;3:1–150

Chinese patients baseline characteristics

	Chinese s	Chinese subgroup			
Characteristic*	Finerenone (N=162)	Placebo (N=163)			
Age, year, mean ± SD	60.62±10.20	56.98±11.42			
Gender, female, n (%)	42 (25.9)	34 (20.9)			
BMI, kg/m ² , mean ± SD	26.51±3.11	26.67±3.35			
Duration of diabetes, years, mean ± SD	13.34±6.72	12.65±7.06			
HbA1c, %, mean ± SD	7.53±1.41	7.53±1.28			
Serum potassium, mmol/L, arithmetic mean ± SD	4.19±0.43	4.20±0.37			
eGFR, ml/min/1.73 m ² , arithmetic mean ± SD	75.40±18.32	77.50±18.95			
eGFR, ml/min/1.73m ² , n (%)					
<25	0 (0)	0 (0)			
25 to <45	10 (6.2)	6 (3.7)			
45 to <60	23 (14.2)	22 (13.5)			
≥60	129 (79.6)	135 (82.8)			
UACR, mg/g, median (Q1-Q3)	676 (320–1339)	779 (303–1614)			
UACR, mg/g, n (%)					
<30	3 (1.9)	2 (1.2)			
30-<300	35 (21.6)	38 (23.3)			
≥300	124 (76.5)	123 (75.5)			

^{*}Values are n (%) or mean \pm SD unless otherwise stated.

eGFR, estimated glomerular filtration rate; HbA1c, glycated haemoglobin; [K+], potassium concentration; Q, quartile; SBP, systolic blood pressure; UACR, urine albumin-to-creatinine ratio

In FIGARO-DKD, finerenone demonstrated kidney and heart benefits¹

	Finerenone		Placebo				
Outcome	n (%)	n per 100 PY	n (%)	n per 100 PY		HR (95% CI)	p-value
Total population (N=7352)							
Kidney composite outcome	350 (9.5)	3.15	395 (10.8)	3.58	-	0.87 (0.76–1.01)	0.0689
Kidney failure	46 (1.2)	0.40	62 (1.7)	0.54	-	0.72 (0.49–1.05)	0.0889
ESKD	32 (0.9)	0.26	49 (1.3)	0.40	-	0.64 (0.41–1.00)	0.0458
eGFR <15 ml/min/1.73m ²	28 (0.8)	0.24	38 (1.0)	0.33	-	0.71 (0.43–1.16)	0.1711
≥40% decrease in eGFR from baseline	338 (9.2)	3.04	385 (10.5)	3.49	-	0.87 (0.75–1.00)	0.0526
Renal death	0 (0)	-	2 (< 0.1)	-		-	-
CV composite outcome	458 (12.4)	3.87	519 (14.2)	4.45	⊢∳ -	0.87 (0.76–0.98)	0.0264
HHF	117 (3.2)	0.96	163 (4.4)	1.36	⊢	0.71 (0.56–0.90)	0.0043
CV death	194 (5.3)	1.56	214 (5.8)	1.74	⊢	0.90 (0.74–1.09)	0.2742
Nonfatal MI	103 (2.8)	0.85	102 (2.8)	0.85	—	0.99 (0.76–1.31)	0.9628
Nonfatal stroke	108 (2.9)	0.89	111 (3.0)	0.92	-	0.97 (0.74–1.26)	0.7932

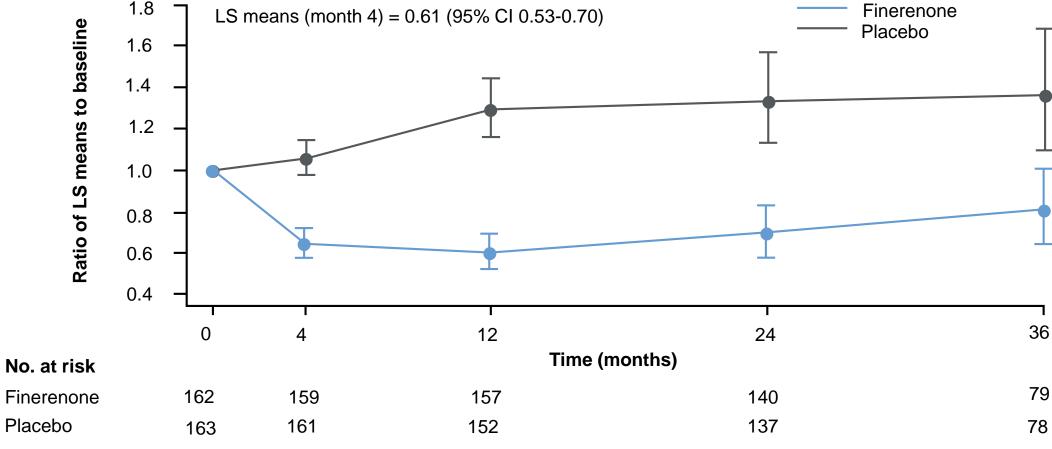
^{1.} Pitt B, et al. N Engl J Med 2021; 85:2252–2263

Favours finerenone Favours placebo

CI, confidence interval; CV, cardiovascular; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; HHF, hospitalisation for heart failure; HR, hazard ratio; MI, myocardial infarction; PY, patient-year

In the Chinese subgroup, finerenone demonstrated significant kidney benefits and numerically reduced CV outcomes

	Finere	enone	Plac	ebo			
Outcome	n (%)	n per 100 PY	n (%)	n per 100 PY		HR (95% CI)	p-value
Chinese subgroup (N=325)							
Kidney composite outcome	25 (15.4)	5.44	46 (28.2)	10.66	⊢♦ -1	0.48 (0.29–0.79)	0.0029
Kidney failure	3 (1.9)	0.62	15 (9.2)	3.22	├	0.20 (0.06–0.70)	0.0050
ESKD	4 (2.5)	0.78	12 (7.4)	2.39	-	0.33 (0.11–1.03)	0.0457
eGFR <15 ml/min/1.73m ²	1 (0.6)	0.21	12 (7.4)	2.58	—	0.08 (0.01–0.65)	0.0025
≥40% decrease in eGFR from baseline	25 (15.4)	5.44	46 (28.2)	10.66	⊢∳ -1	0.48 (0.29–0.79)	0.0029
Renal death	0 (0)	-	0 (0)	-		-	-
CV composite outcome	21 (13.0)	4.36	22 (13.5)	4.52	H-1	0.91 (0.50–1.67)	0.7660
HHF	4 (2.5)	0.79	8 (4.9)	1.61	—	0.51 (0.15–1.70)	0.2649
CV death	1 (0.6)	0.19	7 (4.3)	1.36	+	0.14 (0.02–1.17)	0.0346
Nonfatal MI	6 (3.7)	1.19	1 (0.6)	0.20	-	4.75 (0.55–40.75)	0.1165
Nonfatal stroke	12 (7.4)	2.44	8 (4.9)	1.60	H	1.54 (0.63–3.77)	0.3441


NNI = 1 (95% CI, 4-22) at Month 36 for ≥40% eGFR kidney composite endpoint

*Median treatment time was ~36 months in the Chinese subgroup

CI, confidence interval; CV, cardiovascular; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; HHF, hospitalisation for heart failure; HR, hazard ratio; MI, myocardial infarction; PY, patient-year

Favours finerenone Favours placebo

In the Chinese subgroup, reduction in UACR from baseline at month 4 was significant and was maintained over the 3 years duration of the study

The LS means and 95% CI were derived from a mixed model that takes treatment group, region, screening eGFR category, screening albuminuria type, time, time to treatment*, log-transition baseline value that matches the screen-phase albuminuria type as factors, and logarithmic-transformed baseline value*time as covariate. Independent unstructured covariance patterns were estimated for each treatment group. This analysis excludes values after the date of ESRD. For reference, the LS means reduction in UACR at month 4 in the total FIGARO-DKD population was 0.68 (95% CI 0.65–0.70)¹ CI, confidence interval; eGFR, estimated glomerular filtration rate; ESRD, end-stage kidney disease; LS, ratio of least-squares; UACR, urine-albumin protein ratio 1. Pitt B, et al. N Engl J Med 2021: 85:2252–2263

Finerenone safety profile in the Chinese subgroup was similar with the total population

	Chinese subgroup		Total pop	oulation¹
n (%)	Finerenone N=162	Placebo N=162	Finerenone N=3683	Placebo N=3658
Any TEAE	159 (98.1)	157 (96.9)	3134 (85.1)	3129 (85.5)
Any TEAE leading to study drug discontinuation	8 (4.9)	5 (3.1)	207 (5.6)	183 (5.0)
Any severe TEAE	82 (50.6)	84 (51.9)	1158 (31.4)	1215 (33.2)
Any SAE leading to study drug discontinuation	3 (1.9)	4 (2.5)	70 (1.9)	76 (2.1)
AE with outcome death	2 (1.2)	1 (0.6)	78 (2.1)	86 (2.4)
Any TEAE due to hyperkalaemia	31 (19.1)	30 (18.5)	396 (10.8)	193 (5.3)
Causing hospitalisation	1 (0.6)	0 (0)	21 (0.6)	2 (<0.1)
Leading to permanent discontinuation of study drug	1 (0.6)	1 (0.6)	46 (1.2)	13 (0.4)
Any hyperkalaemia	28 (17.3)	26 (16.0)	335 (9.1)	161 (4.4)
Serious	-	-	25 (0.7)	4 (0.1)
Severe	1 (0.6)	1 (0.6)	20 (0.5)	4 (0.1)
Severe, serious	0	1 (0.6)	15 (0.4)	3 (<0.1)
Serum potassium* > 5.5 mmol/l	15/161 (9.3)	14/161 (8.7)	495/3677 (13.5)	233/3655 (6.4)

In the Chinese subgroup, hyperkalaemia occurrences were similar between finerenone and placebo.

^{*} Footnote in speaker notes

^{1.} Pitt B, et al. N Engl J Med 2021; 85:2252-2263

AE, adverse event; TEAE, treatment-emergent adverse event; SAE, serious adverse event

Conclusions

In Chinese patients with CKD stage 1–4 with moderate-to-severely elevated albuminuria (UACR ≥30 mg/g), well-controlled SBP and HbA1c, treated with optimised RAS blockade, finerenone treatment:

Significantly reduced the risk of the composite kidney outcome and its components compared with placebo

Numerically reduced CV events compared with placebo

Overall AEs and SAEs were balanced between treatment arms; investigatorreported hyperkalaemia occurred more frequently in both the placebo and finerenone arm, respectively compared with the total population but the relative ratio was not increased

AE, adverse event; CKD, chronic kidney disease; CV, cardiovascular; HbA1, hemoglobin A1c; RAS, renin-angiotensin system; SAE, serious adverse event; SBP, systolic blood pressure; UACR, urine albumin-to-creatinine ratio

Thank you

48 countries; 19,381 patients enrolled; 7437 patients randomised

Executive committee

George L. Bakris; Gerasimos Filippatos; Rajiv Agarwal; Stefan D. Anker; Luis M. Ruilope; Bertram Pitt

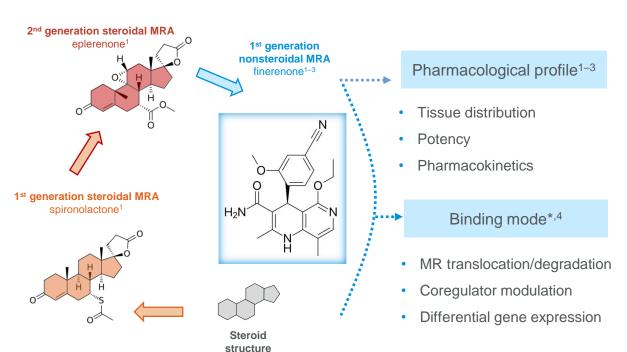
Independent data monitoring committee

Murray Epstein; Aldo Maggioni; Glenn Chertow; Gerald DiBona; Tim Friede; Jose Lopez-Sendon; Jean Rouleau

Clinical event committee

Rajiv Agarwal; Stefan Anker; Phyllis August; Andrew Coats; Hans Diener; Wolfram Döhner; Barry Greenberg; Stephan von Haehling; James Januzzi; Alan Jardine; Carlos Kase; Sankar Navaneethan; Lauren Phillips; Piotr Ponikowski; Pantelis Sarafidis; Titte Srinivas; Turgut Tatlisumak; John Teerlink

National lead investigators


Augusto Vallejos; Richard MacIsaac; Guntram Schernthaner; Pieter Gillard; Maria Eugenia F. Canziani; Theodora Temelkova-Kurktschiev; Ellen Burgess and Sheldon Tobe; Fernando González; Zhi-Hong Liu; Andrés Ángelo Cadena Bonfanti and Carlos Francisco Jaramillo; Martin Prazny; Peter Rossing; Jorma Strand; Michel Marre; Roland Schmieder and Christoph Wanner; Pantelis A. Sarafidis; Juliana Chan; László Rosivall; Joseph Eustace; Ehud Grossman and Yoram Yagil; Giuseppe Remuzzi; Daisuke Koya and Takashi Wada; Luis Alejandro Nevarez Ruiz; Ron Gansevoort and Adriaan Kooy; Trine Finnes; Froilan De Leon; Janusz Gumprecht; Fernando Teixeira e Costa; Alexander Dreval; Anantharaman Vathsala; Aslam Amod; Sin Gon Kim and Byung Wan Lee; Julio Pascual Santos; Bengt-Olov Tengmark; Michel Burnier; Chien-Te Lee; Sukit Yamwong; Ramazan Sari; Kieran McCafferty; Borys Mankovsky; Sharon Adler, Linda Fried, Robert Toto, and Mark Williams; Tran Quang Khanh

The FIGARO-DKD team would also like to thank all participating investigators, the centres, the patients and their families

Finerenone is a potent, highly selective, nonsteroidal MRA, with potential safety advantages over steroidal MRAs

 Differential modes of action between steroidal and the nonsteroidal MRAs^{1–4}

Key pharmacodynamic and pharmacokinetic differences^{1,4}

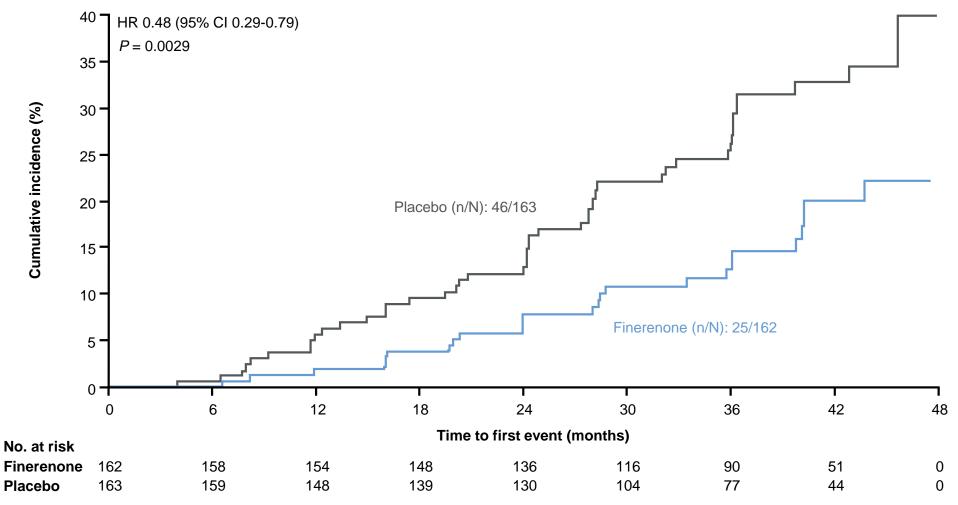
	Spironolactone	Eplerenone	Finerenone	
MRA class	Steroidal	Steroidal	Nonsteroidal	
Potency to MR*	High	Low	High	
Selectivity to MR*	Low	Medium	High	
Metabolites*	Multiple, active	No active	No active	
Tissue distribution*	Kidney ≫ heart (≥6-fold)	Kidney > heart (~3-fold)	Equivalent (1:1)	

Finerenone is:

- More selective for MR receptor than spironolactone or eplerenone
- Highly potent
- More balanced heart:kidney distribution than steroidal MRAs

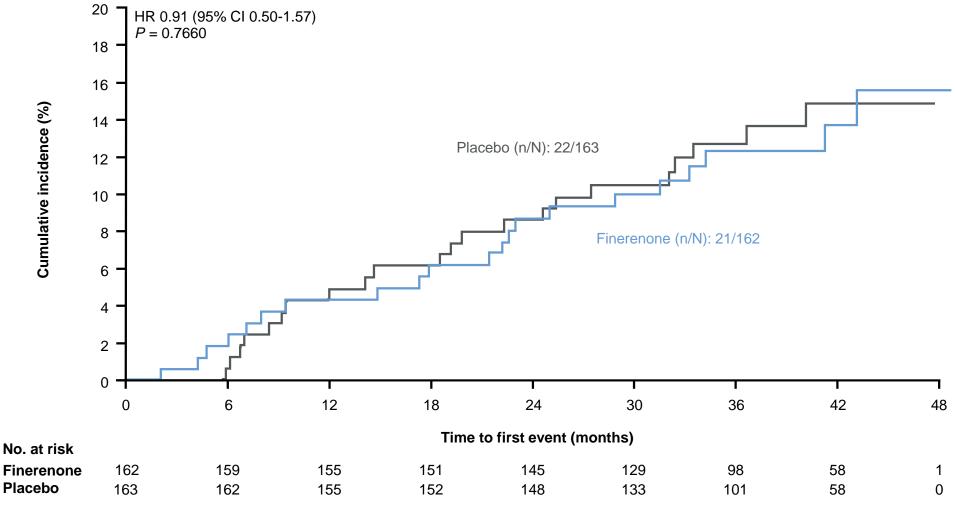
^{*}Statements are based on preclinical data and are not supported by human studies MR, mineralocorticoid receptor; MRA, mineralocorticoid receptor antagonist

^{1.} Kolkhof P, et al. Curr Opin Nephrol Hypertens 2015;24:417-424; 2. Bärfacker L, et al. ChemMedChem 2012;7:1385-1403; 3. Amazit L, et al. J Biol Chem 2015;290:21876-21889;


^{4.} Kolkhof P, et al. Handb Exp Pharmacol 2017;243:271-305

Chinese patients medication at baseline showed a high use of insulin but negligible use of SGLT-2is

	Chinese subgroup		
Medication use*	Finerenone (N=162)	Placebo (N=163)	
ACEis	15 (9.3)	25 (15.3)	
ARBs	145 (89.5)	138 (84.7)	
Beta blockers	41 (25.3)	37 (22.7)	
Diuretics	21 (13.0)	25 (15.3)	
Statins	81 (50.0)	81 (49.7)	
Potassium-lowering agents#	0 (0)	0 (0)	
Glucose-lowering therapies	161 (99.4)	159 (97.5)	
Insulin	122 (75.3)	118 (72.4)	
GLP-1RAs	5 (3.1)	5 (3.1)	
SGLT-2is	1 (0.6)	0 (0)	


^{*}Values are n (%); *Including sodium polystyrene sulfonate, calcium polystyrene sulfonate, and potassium-binding agents
ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; GLP-1RA, glucagon-like peptide-1 receptor agonist; SGLT-2i, sodium-glucose co-transporter-2 inhibitor

In the Chinese subgroup, finerenone significantly reduced the risk of the ≥40% kidney composite outcome: Time to kidney failure, sustained ≥40% decrease in eGFR from baseline, or renal death

CI, confidence interval; eGFR, estimated glomerular filtration rate; HR, hazard ratio

In the Chinese subgroup, finerenone numerically reduced the risk of primary CV outcome: Time to first CV death, nonfatal stroke, nonfatal MI, and hospitalisation due to heart failure

CI, confidence interval; CV, cardiovascular; HR, hazard ratio; MI, myocardial infarction