

Validation of a CKD progression risk prediction model in the **FIDELITY dataset population**

N. TANGRI^{1,2}, T. FERGUSON^{1,2}, S. J. LEON^{2,3}, S. D. ANKER^{4,5}, B. PITT⁶, P. ROSSING^{7,8}, L. M. RUILOPE^{9–11}, A. E. FARJAT¹², Y. M. K. FARAG¹³, P. SCHLOEMER¹⁴, R. LAWATSCHECK¹⁵, K. ROHWEDDER¹⁶, G. L. BAKRIS¹⁷

¹Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Canada ³University of Manitoba, Canada ³University of Manitoba, Canada ⁴Department of Cardiology (CVK) of German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité University, Wroclaw, Poland ⁶Department of Medicine, University of Michigan School of Medicine, University, Wroclaw, Poland ⁶Department of Clinical University, Wroclaw, Poland ⁶Department of Clinical University, Wroclaw, Poland ⁶Department of Medicine, University, Wroclaw, Poland ⁶Department of Clinical University, Wroclaw, Poland ⁶Department of Medicine, University, Wroclaw, Poland ⁶Department of Clinical University, Wroclaw, Poland ⁶Department of Medicine, University, Wroclaw, Poland ⁶Department Medicine, University of Copenhagen, Copenhagen, Denmark ⁹Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research imas12, Madrid, Spain ¹⁰CIBER-CV, Hospital University of Madrid, Spain ¹¹Faculty of Sport Sciences, European University of Madrid, Spain ¹²Research and Development, Clinical Data Sciences and Analytics, Bayer PLC, Reading, UK ¹³US Medical Affairs, Bayer US LLC Pharmaceuticals, Whippany, NJ, USA ¹⁴Statistics and Data Insights, Bayer AG, Berlin, Germany ¹⁵Cardiology and Nephrology Clinical Development, Bayer AG, Berlin, Germany ¹⁷Department of Medicine, University of Chicago Medicine, Chicago, IL, USA

INTRODUCTION

- Chronic kidney disease (CKD) affects over 800 million individuals worldwide¹ and is often diagnosed at later disease stages when opportunities to prevent adverse outcomes are limited²
- Accurate prediction of individual risk of CKD progression could enhance patient experiences and outcomes
- Klinrisk, a lab-based risk prediction model, has been shown to accurately predict CKD progression in adults at all stages of CKD³

AIM

• To validate the Klinrisk model for the prediction of key composite kidney outcomes up to 4 years post-randomisation in FIDELITY, a dataset combining individual patient-level data from two phase III, multicentre, double-blind trials investigating finerenone – a nonsteroidal mineralocorticoid receptor antagonist

METHOD

Population (validation cohort)

This post hoc analysis included all patients from FIDELITY, a prespecified pooled analysis of data from the FIDELIO-DKD (NCT02540993) and FIGARO-DKD (NCT02545049) trials⁴:

- Adults with CKD and type 2 diabetes (T2D) receiving a maximum tolerated dose of a renin-angiotensin system inhibitor
- Randomised 1:1 to finerenone or placebo
- Median follow-up: 3 years

Key composite kidney outcomes

- **Primary**: ≥40% estimated glomerular filtration rate (eGFR) decline or kidney failure
- Secondary: ≥57% eGFR decline or kidney failure

Variables used for model predictions

Klinrisk model risk predictions were based on single timepoint (baseline) measures of demographic data and routinely collected laboratory data, including:

- Age and sex
- Complete blood count
- A comprehensive metabolic panel
- Urine albumin-to-creatinine ratio (UACR)
- eGFR

Table 1. Selected FIDELITY baseline characteristics

Charact

Age, mea

Sex, ma

Sex, fem Mean eG

Median

*Data shown as n (%) unless otherwise specified eGFR, estimated glomerular filtration rate; IQR, interquartile range; SD, standard deviation; UACR. urine albumin-to-creatinine ratio

Model performance and calibration

- The Klinrisk model accurately predicted the primary outcome and outperformed KDIGO heatmap categories (Figure 1)
- Calibration was found to be appropriate:
- at 3 years)

Statistical analyses

- Model discrimination ability and calibration were calculated using area under the curve (AUC) values, Brier scores and calibration plots in the overall population
- Sensitivity analyses examined the accuracy of the models in predicting the secondary outcome and the change in risk score over time
- Kidney Disease: Improving Global Outcomes (KDIGO) heatmap categories were used as the reference standard

Baseline characteristics

• Selected baseline characteristics for the 13,026 patients included in the analysis are shown in Table 1

eristic, n (%)*	Total, N=13,026
an (SD)	64.8 (9.5)
e	9088 (69.8)
ale	3938 (30.2)
GFR, ml/min/1.73 m² (SD)	57.6 (21.7)
JACR, mg/g (IQR)	515 (198–1147)

• At 2 and 4 years, 984 and 1795 patients had experienced a primary outcome event, respectively

- Brier score 0.067 (95% confidence interval [CI] 0.064–0.070) at 2 years and 0.115 (95% CI 0.109–0.120) at 4 years
- Calibration at 3 years is shown in Figure 2

• Discrimination accuracy for the secondary outcome was similar to that obtained for the primary outcome (C-statistic 0.88; 95% CI 0.87–0.90

Figure 1. AUC scores for the primary outcome for years 1 to 4 with Klinrisk model and KDIGO heat map categories

Figure 2. Calibration plots for Klinrisk prediction model for the primary composite outcome at 3 years

AUC, area under the curve; CI, confidence interval

AUC, area under the curve; CI, confidence interval; KDIGO, Kidney Disease: Improving Global Outcomes

CONCLUSIONS

- Based on routinely collected lab data, the Klinrisk machine learning model accurately predicted CKD progression events in a well-characterised population pooled from two global clinical trials
- Prospective implementation of the model in clinical trial enrolment, as well as clinical care pathways, may allow for earlier intervention and improve clinical outcomes for patients with CKD

ACKNOWLEDGEMENTS

Funded by Bayer AG. Medical writing assistance provided by Chameleon Communications International and funded by Bayer AG.

REFERENCES

1 Jager, KJ et al. A single number for advocacy and communication -worldwide more than 850 million individuals have kidney diseases. *Kidney Int 2019; 96: 1048-1050* 2 Szczech LA et al. Primary care detection of chronic kidney disease in adults with type-2 diabetes: the ADD-CKD Study (awareness, detection and drug therapy in type 2 diabetes and chronic kidney disease). PloS One 2014; 9: e110535. 3 Ferguson T et al. Development and external validation of a machine learning model for progression of CKD. *Kidney Int Rep*

2022; 7: 1772-1781 4 Agarwal R et al. Cardiovascular and kidney outcomes with

finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J 2022; 43: 474-484

CONTACT INFORMATION

Navdeep Tangri

Max Rady College of Medicine, Internal Medicine, Section of Nephrology, University of Manitoba, 2LB19 - 2300 McPhillips Street, Seven Oaks General Hospital, Winnipeg, Manitoba R2V 3M3, Canada

Phone: +1 204 -631-3834; Fax: +1 204-632-3660; ntangri@sogh.mb.ca

RESTRICTED